Your browser doesn't support javascript.
loading
The non-canonical poly(A) polymerase FAM46C promotes erythropoiesis.
Yang, Ke; Zhu, Tianqi; Yin, Jiaying; Zhang, Qiaoli; Li, Jing; Fan, Hong; Han, Gaijing; Xu, Weiyin; Liu, Nan; Lv, Xiang.
Afiliação
  • Yang K; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China; The
  • Zhu T; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China.
  • Yin J; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
  • Zhang Q; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China.
  • Li J; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
  • Fan H; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
  • Han G; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
  • Xu W; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China.
  • Liu N; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China. Ele
  • Lv X; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Medical Epigenetics Research Center,
J Genet Genomics ; 51(6): 594-607, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38403115
ABSTRACT
The post-transcriptional regulation of mRNA is a crucial component of gene expression. The disruption of this process has detrimental effects on the normal development and gives rise to various diseases. Searching for novel post-transcriptional regulators and exploring their roles are essential for understanding development and disease. Through a multimodal analysis of red blood cell trait genome-wide association studies (GWAS) and transcriptomes of erythropoiesis, we identify FAM46C, a non-canonical RNA poly(A) polymerase, as a necessary factor for proper red blood cell development. FAM46C is highly expressed in the late stages of the erythroid lineage, and its developmental upregulation is controlled by an erythroid-specific enhancer. We demonstrate that FAM46C stabilizes mRNA and regulates erythroid differentiation in a polymerase activity-dependent manner. Furthermore, we identify transcripts of lysosome and mitochondria components as highly confident in vivo targets of FAM46C, which aligns with the need of maturing red blood cells for substantial clearance of organelles and maintenance of cellular redox homeostasis. In conclusion, our study unveils a unique role of FAM46C in positively regulating lysosome and mitochondria components, thereby promoting erythropoiesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polinucleotídeo Adenililtransferase / Eritropoese Limite: Animals / Humans Idioma: En Revista: J Genet Genomics Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polinucleotídeo Adenililtransferase / Eritropoese Limite: Animals / Humans Idioma: En Revista: J Genet Genomics Ano de publicação: 2024 Tipo de documento: Article