Your browser doesn't support javascript.
loading
Optimizing the design of axial flow pump blades based on fluid characteristics.
Zhu, Lin; Yu, Qifeng; Yu, Lu; Wang, Lizhen; Yang, Yuncong; Shen, Peng; Fan, Yubo.
Afiliação
  • Zhu L; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Yu Q; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Yu L; Shanghai NewMed Medical Co., Ltd, Shanghai, China.
  • Wang L; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Yang Y; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Shen P; School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Fan Y; Shanghai NewMed Medical Co., Ltd, Shanghai, China.
Article em En | MEDLINE | ID: mdl-38444287
ABSTRACT
Non-physiological blood flow conditions in axial blood pumps lead to some complications, including hemolysis, platelet activation, thrombosis, and embolism. The high speed of the axial blood pump destroys large amounts of erythrocytes, thereby causing hemolysis and thrombosis. Thus, this study aims to reduce the vortices and reflux in the flow field by optimizing the axial blood pump. The axial blood pump and arterial flow field were modeled by the finite element method. The blood was assumed to be incompressible, turbulent, and Newtonian. The SST k-ω turbulence model was used. The frozen rotor method was also used to calculate the snapshot of motion. Many vortices and reflux exist in the flow field of the blood pump without optimization. The improved flow field had almost no vortex and reflux, thereby reducing the exposure time of blood. The optimized blood pump had little influence on the pressure field and shear stress field. The optimized blood pump mainly reduced the vortex, reflux, and the risk of thrombosis in the flow field. The flow field characteristics of an axial blood pump were studied, and the results showed the risk of thrombosis and hemolysis in the blood pump. In accordance with the relationship between the blade shape and the flow field, the blade of the blood pump was optimized, reducing the vortex and reflux of the flow field, as well as the risk of thrombosis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Comput Methods Biomech Biomed Engin Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Comput Methods Biomech Biomed Engin Ano de publicação: 2024 Tipo de documento: Article