Your browser doesn't support javascript.
loading
Enhanced theranostic efficacy of epirubicin-loaded SPION@MSN through co-delivery of an anti-miR-21-expressing plasmid and ZIF-8 hybridization to target colon adenocarcinoma.
Abrishami, Amir; Bahrami, Ahmad Reza; Saljooghi, Amir Sh; Matin, Maryam M.
Afiliação
  • Abrishami A; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. matin@um.ac.ir.
  • Bahrami AR; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. matin@um.ac.ir.
  • Saljooghi AS; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Matin MM; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Nanoscale ; 16(12): 6215-6240, 2024 Mar 21.
Article em En | MEDLINE | ID: mdl-38446130
ABSTRACT
Using targeted drug delivery systems has emerged as a promising approach to increase the efficacy of chemotherapy, particularly in combination with gene therapy. The overexpression of miR-21 plays a crucial role in colorectal cancer (CRC) progression, and targeted inhibition of miR-21 offers significant potential for enhancing CRC chemotherapy outcomes. In this study, a theranostic system based on mesoporous silica and superparamagnetic iron oxide nanoparticles (SPION@MSNs) was synthesized as a core-shell structure. After loading epirubicin (EPI) in the open pores of MSN, the plasmid expressing anti-miR-21 (pDNA) covered the outer surface with the help of a ZIF-8 (zeolitic imidazolate framework-8) film. Afterward, polyethylene glycol (PEG) and AS1411 aptamer were conjugated to the surface to improve the protective, biocompatibility, and targeting abilities of the nanocarrier. Moreover, the physicochemical characteristics as well as the loading capacity and release profile of EPI and pDNA were fully evaluated. The uptake of the nanoparticles by CRC and normal cell lines in addition to the anticancer effects related to targeted combinational therapy were investigated in vitro. Finally, in vivo tests were performed on BALB/c mice bearing colorectal tumors to evaluate the effectiveness of the targeted nanoparticles, their possible side effects, and also their application in fluorescence and magnetic imaging in vivo. The successful synthesis of SPION@MSN-EPI/pDNA-ZIF-8-PEG-Apt nanoparticles (∼68 nm) and good loading efficiency and controlled release of EPI and pDNA were confirmed. Moreover, hemolysis and gel retardation assays demonstrated the biocompatibility and plasmid protection. Cellular uptake and expression of copGFP illustrated selective entry and transient transfection of targeted nanoparticles, consistent with the cytotoxicity results that indicated the synergistic effects of chemo-gene therapy. The results of animal studies proved the high antitumor efficiency of targeted nanoparticles with minimal tissue damage, which was in line with fluorescence and magnetic imaging results. The novel synthesized nanoparticles containing SPION@MSN-ZIF-8 were suitable for CRC theranostics, and the combined approach of chemo-gene therapy suppressed the tumor more effectively.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Neoplasias do Colo / MicroRNAs / Nanopartículas Limite: Animals Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Neoplasias do Colo / MicroRNAs / Nanopartículas Limite: Animals Idioma: En Revista: Nanoscale Ano de publicação: 2024 Tipo de documento: Article