Your browser doesn't support javascript.
loading
Evolution of Phosphorylase Activity in an Ancestral Glycosyltransferase.
Franceus, Jorick; Rivas-Fernández, José Pablo; Lormans, Jolien; Rovira, Carme; Desmet, Tom.
Afiliação
  • Franceus J; Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
  • Rivas-Fernández JP; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain.
  • Lormans J; Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
  • Rovira C; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain.
  • Desmet T; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
ACS Catal ; 14(5): 3103-3114, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38449530
ABSTRACT
The reconstruction of ancestral sequences can offer a glimpse into the fascinating process of molecular evolution by exposing the adaptive pathways that shape the proteins found in nature today. Here, we track the evolution of the carbohydrate-active enzymes responsible for the synthesis and turnover of mannogen, a critical carbohydrate reserve in Leishmania parasites. Biochemical characterization of resurrected enzymes demonstrated that mannoside phosphorylase activity emerged in an ancestral bacterial mannosyltransferase, and later disappeared in the process of horizontal gene transfer and gene duplication in Leishmania. By shuffling through plausible historical sequence space in an ancestral mannosyltransferase, we found that mannoside phosphorylase activity could be toggled on through various combinations of mutations at positions outside of the active site. Molecular dynamics simulations showed that such mutations can affect loop rigidity and shield the active site from water molecules that disrupt key interactions, allowing α-mannose 1-phosphate to adopt a catalytically productive conformation. These findings highlight the importance of subtle distal mutations in protein evolution and suggest that the vast collection of natural glycosyltransferases may be a promising source of engineering templates for the design of tailored phosphorylases.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Catal Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Catal Ano de publicação: 2024 Tipo de documento: Article