Your browser doesn't support javascript.
loading
Biofilm formation and antioxidation were responsible for the increased resistance of N. eutropha to chloramination for drinking water treatment.
Zheng, Shikan; Li, Jianguo; Yan, Wanli; Zhao, Wenya; Ye, Chengsong; Yu, Xin.
Afiliação
  • Zheng S; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
  • Li J; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
  • Yan W; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
  • Zhao W; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
  • Ye C; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China. Electronic address: csye@xmu.edu.cn.
  • Yu X; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China. Electronic address: xyu@xmu.edu.cn.
Water Res ; 254: 121432, 2024 May 01.
Article em En | MEDLINE | ID: mdl-38461606
ABSTRACT
Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Água Potável / Purificação da Água Idioma: En Revista: Water Res / Water res / Water research Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Água Potável / Purificação da Água Idioma: En Revista: Water Res / Water res / Water research Ano de publicação: 2024 Tipo de documento: Article