Your browser doesn't support javascript.
loading
One-Dimensional High-Entropy Compounds.
Du, Junyi; Liu, Shuai; Liu, Ye; Wu, Geng; Liu, Xiaocheng; Zhang, Wujun; Zhang, Yong; Hong, Xun; Li, Qingwen; Kang, Lixing.
Afiliação
  • Du J; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Liu S; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Liu Y; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Wu G; Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
  • Liu X; Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
  • Zhang W; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Zhang Y; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Hong X; Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
  • Li Q; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
  • Kang L; Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
J Am Chem Soc ; 146(12): 8464-8471, 2024 Mar 27.
Article em En | MEDLINE | ID: mdl-38483268
ABSTRACT
One-dimensional (1D) high-entropy compounds (HECs) with subnano diameters are highly attractive because long-range electron delocalization may occur along the high-entropy atomic chain, which results in extraordinary properties. Nevertheless, synthesizing such 1D HECs presents a substantial challenge, and the physicochemical attributes of these novel structures remain ambiguous. Herein, we developed a comelting-filling-freezing-modification (co-MFFM) method for synthesizing 1D high-entropy metal phosphide (HEP) by simultaneously encapsulating various metal cations within single-walled carbon nanotubes (SWCNTs) followed with a phosphorization process. The resulting 1D HEP nanowires confined within SWCNTs exhibit crucial features, including an ultrafine, high-entropy, and amorphous structure, along with a core-shell arrangement. The SWCNT as a shell could donate π electrons to 1D HEP for enhanced electron delocalization and protect 1D HEP as an atomically single-layered protective covering, thus boosting high electrocatalytic activity and stability. Moreover, the co-MFFM method demonstrates scalability for mass production and displays universal applicability to the synthesis of various 1D HECs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article