Your browser doesn't support javascript.
loading
Consecutive Reduction of Five Carbon Dioxide Molecules by Gas-Phase Niobium Carbide Cluster Anions Nb3C4-: Unusual Mechanism for Enhanced Reactivity by the Carbon Ligands.
Zhang, Yi-Heng; Ma, Jia-Bi.
Afiliação
  • Zhang YH; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
  • Ma JB; Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
J Phys Chem A ; 128(12): 2323-2329, 2024 Mar 28.
Article em En | MEDLINE | ID: mdl-38483325
ABSTRACT
Studying the cleavage of the C═O bond during CO2 activation at room temperature is highly significant for comprehending the CO2 conversion processes. Herein, mass spectrometry experiments and density functional theory calculations indicate that the niobium carbide anions Nb3C4- can continuously convert five CO2 molecules to CO under thermal collision conditions, while the other clusters with less carbon ligands Nb3C1-3- reduce fewer CO2 molecules. Size-dependent reactivity of Nb3C1-4- cluster anions toward CO2 is observed. Interestingly, the carbon atoms in Nb3C4- not only act as highly active adsorption sites for CO2 but also serve as electron donors to reduce CO2. The stored electrons are released through a carbon-carbon coupling process. Our findings on the role of carbon ligands in enhancing transition metal carbide reactivity can offer new insights for designing active sites on catalysts with both high activity and selectivity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Ano de publicação: 2024 Tipo de documento: Article