Your browser doesn't support javascript.
loading
Precise detection of awareness in disorders of consciousness using deep learning framework.
Yang, Huan; Wu, Hang; Kong, Lingcong; Luo, Wen; Xie, Qiuyou; Pan, Jiahui; Quan, Wuxiu; Hu, Lianting; Li, Dantong; Wu, Xuehai; Liang, Huiying; Qin, Pengmin.
Afiliação
  • Yang H; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; G
  • Wu H; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
  • Kong L; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospi
  • Luo W; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528199, China.
  • Xie Q; Joint Research Center for disorders of consciousness, Department of Rehabilitation, Zhujiang Hospital, School of Rehabilitation Sciences, Southern Medical University, Guangzhou 510220, China.
  • Pan J; School of Software, South China Normal University, Foshan 528225, China; Pazhou Lab, Guangzhou 510330, China.
  • Quan W; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospi
  • Hu L; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; G
  • Li D; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; G
  • Wu X; Pazhou Lab, Guangzhou 510330, China; Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Instit
  • Liang H; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; G
  • Qin P; Pazhou Lab, Guangzhou 510330, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou
Neuroimage ; 290: 120580, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38508294
ABSTRACT
Diagnosis of disorders of consciousness (DOC) remains a formidable challenge. Deep learning methods have been widely applied in general neurological and psychiatry disorders, while limited in DOC domain. Considering the successful use of resting-state functional MRI (rs-fMRI) for evaluating patients with DOC, this study seeks to explore the conjunction of deep learning techniques and rs-fMRI in precisely detecting awareness in DOC. We initiated our research with a benchmark dataset comprising 140 participants, including 76 unresponsive wakefulness syndrome (UWS), 25 minimally conscious state (MCS), and 39 Controls, from three independent sites. We developed a cascade 3D EfficientNet-B3-based deep learning framework tailored for discriminating MCS from UWS patients, referred to as "DeepDOC", and compared its performance against five state-of-the-art machine learning models. We also included an independent dataset consists of 11 DOC patients to test whether our model could identify patients with cognitive motor dissociation (CMD), in which DOC patients were behaviorally diagnosed unconscious but could be detected conscious by brain computer interface (BCI) method. Our results demonstrate that DeepDOC outperforms the five machine learning models, achieving an area under curve (AUC) value of 0.927 and accuracy of 0.861 for distinguishing MCS from UWS patients. More importantly, DeepDOC excels in CMD identification, achieving an AUC of 1 and accuracy of 0.909. Using gradient-weighted class activation mapping algorithm, we found that the posterior cortex, encompassing the visual cortex, posterior middle temporal gyrus, posterior cingulate cortex, precuneus, and cerebellum, as making a more substantial contribution to classification compared to other brain regions. This research offers a convenient and accurate method for detecting covert awareness in patients with MCS and CMD using rs-fMRI data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtornos da Consciência / Aprendizado Profundo Limite: Humans Idioma: En Revista: Neuroimage Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtornos da Consciência / Aprendizado Profundo Limite: Humans Idioma: En Revista: Neuroimage Ano de publicação: 2024 Tipo de documento: Article