Your browser doesn't support javascript.
loading
A machine-learning method for biobank-scale genetic prediction of blood group antigens.
Hyvärinen, Kati; Haimila, Katri; Moslemi, Camous; Biobank, Blood Service; Olsson, Martin L; Ostrowski, Sisse R; Pedersen, Ole B; Erikstrup, Christian; Partanen, Jukka; Ritari, Jarmo.
Afiliação
  • Hyvärinen K; Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland.
  • Haimila K; Blood Group Unit, Finnish Red Cross Blood Service, Vantaa, Finland.
  • Moslemi C; Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark.
  • Biobank BS; Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
  • Olsson ML; Finnish Red Cross Blood Service, Vantaa, Finland.
  • Ostrowski SR; Department of Laboratory Medicine, Lund University, Lund, Sweden.
  • Pedersen OB; Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden.
  • Erikstrup C; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
  • Partanen J; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
  • Ritari J; Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark.
PLoS Comput Biol ; 20(3): e1011977, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38512997
ABSTRACT
A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antígenos de Grupos Sanguíneos / Antígenos de Plaquetas Humanas Limite: Humans Idioma: En Revista: PLoS Comput Biol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antígenos de Grupos Sanguíneos / Antígenos de Plaquetas Humanas Limite: Humans Idioma: En Revista: PLoS Comput Biol Ano de publicação: 2024 Tipo de documento: Article