Your browser doesn't support javascript.
loading
Machine learning method for the classification of the state of living organisms' oscillations.
Kweku, David; Villalba, Maria I; Willaert, Ronnie G; Yantorno, Osvaldo M; Vela, Maria E; Panorska, Anna K; Kasas, Sandor.
Afiliação
  • Kweku D; Department of Mathematics and Statistics, University of Nevada Reno, Reno, NV, United States.
  • Villalba MI; Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne, Lausanne, Switzerland.
  • Willaert RG; International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Brussels, Switzerland.
  • Yantorno OM; International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Brussels, Switzerland.
  • Vela ME; Research Group Structural Biology Brussels, Alliance Research Group VUB-UGhent NanoMicrobiology (NAMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
  • Panorska AK; Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina.
  • Kasas S; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina.
Front Bioeng Biotechnol ; 12: 1348106, 2024.
Article em En | MEDLINE | ID: mdl-38515626
ABSTRACT
The World Health Organization highlights the urgent need to address the global threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of bacterial response to antibiotics and their virulence state is crucial for the effective treatment of bacterial infections. However, current methods for investigating bacterial antibiotic response and metabolic state are time-consuming and lack accuracy. To address these limitations, we propose a novel method for classifying bacterial virulence based on statistical analysis of nanomotion recordings. We demonstrated the method by classifying living Bordetella pertussis bacteria in the virulent or avirulence phase, and dead bacteria, based on their cellular nanomotion signal. Our method offers significant advantages over current approaches, as it is faster and more accurate. Additionally, its versatility allows for the analysis of cellular nanomotion in various applications beyond bacterial virulence classification.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2024 Tipo de documento: Article