Your browser doesn't support javascript.
loading
Improved hydration property of tissue adhesive/hemostatic microparticle based on hydrophobically-modified Alaska pollock gelatin.
Ito, Shima; Nagasaka, Kazuhiro; Komatsu, Hiyori; Palai, Debabrata; Nishiguchi, Akihiro; Taguchi, Tetsushi.
Afiliação
  • Ito S; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ib
  • Nagasaka K; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ib
  • Komatsu H; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ib
  • Palai D; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
  • Nishiguchi A; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
  • Taguchi T; Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ib
Biomater Adv ; 159: 213834, 2024 May.
Article em En | MEDLINE | ID: mdl-38518390
ABSTRACT
The management of bleeding is an important aspect of endoscopic surgery to avoid excessive blood loss and minimize pain. In clinical settings, sprayable hemostatic particles are used for their easy delivery, adaptability to irregular shapes, and rapid hydration. However, conventional hemostatic particles present challenges associated with tissue adhesion. In a previous study, we reported tissue adhesive microparticles (C10-sa-MPs) derived from Alaska pollock gelatin modified with decyl groups (C10-sa-ApGltn) using secondary amines as linkages. The C10-sa-MPs adhere to soft tissues through a hydration mechanism. However, their application as a hemostatic agent was limited by their long hydration times, attributed to their high hydrophobicity. In this study, we present a new type microparticle, C10-am-MPs, synthesized by incorporating decanoyl group modifications into ApGltn (C10-am-ApGltn), using amide bonds as linkages. C10-am-MPs exhibited enhanced hydration characteristics compared to C10-sa-MPs, attributed to superior water absorption facilitated by amide bonds rather than secondary amines. Furthermore, C10-am-MPs demonstrated comparable tissue adhesion properties and underwater adhesion stability to C10-sa-MPs. Notably, C10-am-MPs exhibited accelerated blood coagulation in vitro compared to C10-sa-MPs. The application of C10-am-MPs in an in vivo rat liver hemorrhage model resulted in a hemostatic effect comparable to a commercially available hemostatic particle. These findings highlight the potential utility of C10-am-MPs as an effective hemostatic agent for endoscopic procedures and surgical interventions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adesivos Teciduais / Hemostáticos / Gadiformes Limite: Animals País/Região como assunto: America do norte Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adesivos Teciduais / Hemostáticos / Gadiformes Limite: Animals País/Região como assunto: America do norte Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article