Your browser doesn't support javascript.
loading
Computer-aided rational design strategy based on protein surface charge to improve the thermal stability of a novel esterase from Geobacillus jurassicus.
Song, Runfei; Zhang, Jin; Zhu, Mengyu; Lin, Lin; Wei, Wei; Wei, Dongzhi.
Afiliação
  • Song R; State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
  • Zhang J; State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
  • Zhu M; State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
  • Lin L; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
  • Wei W; Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
  • Wei D; State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China. weiwei@ecust.edu.cn.
Biotechnol Lett ; 46(3): 443-458, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38523202
ABSTRACT

OBJECTIVES:

Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases.

RESULTS:

Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (DsCα-Cα) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T1/2) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min).

CONCLUSION:

Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estabilidade Enzimática / Esterases / Geobacillus Idioma: En Revista: Biotechnol Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estabilidade Enzimática / Esterases / Geobacillus Idioma: En Revista: Biotechnol Lett Ano de publicação: 2024 Tipo de documento: Article