Your browser doesn't support javascript.
loading
Dual drug nanoparticle synergistically induced apoptosis, suppressed inflammation, and protected autophagic response in rheumatoid arthritis fibroblast-like synoviocytes.
Haloi, Prakash; Choudhary, Rajat; Lokesh, B Siva; Konkimalla, V Badireenath.
Afiliação
  • Haloi P; School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
  • Choudhary R; School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
  • Lokesh BS; School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
  • Konkimalla VB; School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India. Electronic address: badireenath@niser.ac.in.
Immunol Lett ; 267: 106854, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38537719
ABSTRACT
Rheumatoid arthritis (RA) is a chronic immune-mediated joint inflammatory disorder associated with aberrant activation of fibroblast-like synoviocytes (FLS). Recently, FLS gained importance due to its crucial role in RA pathogenesis, and thus, targeting FLS is suggested as an attractive treatment strategy for RA. FLS-targeted approaches may be combined with disease-modifying antirheumatic drugs (DMARDs) and natural phytochemicals to improve efficacy in RA control and negate immunosuppression. In this study, we assessed the therapeutic effectiveness of DD NP HG in primary RA-FLS cells isolated from the synovial tissue of FCA-induced RA rats. We observed that DD NP HG had good biosafety for healthy FLS cells and, at higher concentrations, a mild inhibitory effect on RA-FLS. The combination therapy (DD NP HG) of MTX NP and PEITC NE in RA-FLS showed a higher rate of apoptosis with significantly reduced LPS-induced expression of pro-inflammatory cytokines (TNF-α, IL-17A, and IL-6) in arthritic FLS. Further, the gene expression studies showed that DD NP HG significantly down-regulated the mRNA expression of IL-1ß, RANKL, NFATc1, DKK1, Bcl-xl, Mcl-1, Atg12, and ULK1, and up-regulated the mRNA expression of OPG, PUMA, NOXA and SQSTM1 in LPS-stimulated RA-FLS cells. Collectively, our results demonstrated that DD NP HG significantly inhibited the RA-FLS proliferation via inducing apoptosis, down-regulating pro-inflammatory cytokines, and further enhancing the expression of genes associated with bone destruction in RA pathogenesis. A nanotechnology approach is a promising strategy for the co-delivery of dual drugs to regulate the RA-FLS function and achieve synergistic treatment of RA.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artrite Reumatoide / Autofagia / Apoptose / Nanopartículas / Fibroblastos / Sinoviócitos Limite: Animals / Humans / Male Idioma: En Revista: Immunol Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artrite Reumatoide / Autofagia / Apoptose / Nanopartículas / Fibroblastos / Sinoviócitos Limite: Animals / Humans / Male Idioma: En Revista: Immunol Lett Ano de publicação: 2024 Tipo de documento: Article