Your browser doesn't support javascript.
loading
The Effects of Etchant on via Hole Taper Angle and Selectivity in Selective Laser Etching.
Kim, Jonghyeok; Kim, Byungjoo; Choi, Jiyeon; Ahn, Sanghoon.
Afiliação
  • Kim J; Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea.
  • Kim B; Department of Mechanical Engineering (Robot∙Manufacturing Systems), University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea.
  • Choi J; Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea.
  • Ahn S; Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea.
Micromachines (Basel) ; 15(3)2024 Feb 25.
Article em En | MEDLINE | ID: mdl-38542567
ABSTRACT
This research focuses on the manufacturing of a glass interposer that has gone through glass via (TGV) connection holes. Glass has unique properties that make it suitable for 3D integrated circuit (IC) interposers, which include low permittivity, high transparency, and adjustable thermal expansion coefficient. To date, various studies have suggested numerous techniques to generate holes in glass. In this study, we adopt the selective laser etching (SLE) technique. SLE consists of two processes local modification via an ultrashort pulsed laser and chemical etching. In our previous study, we found that the process speed can be enhanced by changing the local modification method. For further enhancement in the process speed, in this study, we focus on the chemical etching process. In particular, we try to find a proper etchant for TGV formation. Here, four different etchants (HF, KOH, NaOH, and NH4F) are compared in order to improve the etching speed. For a quantitative comparison, we adopt the concept of selectivity. The results show that NH4F has the highest selectivity; therefore, we can tentatively claim that it is a promising candidate etchant for generating TGV. In addition, we also observe a taper angle variation according to the etchant used. The results show that the taper angle of the hole is dependent on the concentration of the etchant as well as the etchant itself. These results may be applicable to various industrial fields that aim to adjust the taper angle of holes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article