Your browser doesn't support javascript.
loading
Design and Mechanism Study of High-Safety and Long-Life Electrolyte for High-Energy-Density Lithium-Ion Batteries.
Chang, Zenghua; Ma, Chenxi; Wang, Rennian; Wang, Bo; Yang, Man; Li, Bin; Zhang, Tianhang; Li, Zhanhai; Zhao, Peizhu; Qi, Xiaopeng; Wang, Jiantao.
Afiliação
  • Chang Z; China Automotive Battery Research Institute Co., Ltd., No. 11 Xingke Dong Street, Huairou District, Beijing 101407, P. R. China.
  • Ma C; General Research Institute for Nonferrous Metals, No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
  • Wang R; National Power Battery Innovation Center, GRINM Group Corporation Limited (GRINM Group), No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
  • Wang B; China Automotive Battery Research Institute Co., Ltd., No. 11 Xingke Dong Street, Huairou District, Beijing 101407, P. R. China.
  • Yang M; National Power Battery Innovation Center, GRINM Group Corporation Limited (GRINM Group), No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
  • Li B; China Automotive Battery Research Institute Co., Ltd., No. 11 Xingke Dong Street, Huairou District, Beijing 101407, P. R. China.
  • Zhang T; National Power Battery Innovation Center, GRINM Group Corporation Limited (GRINM Group), No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
  • Li Z; China Automotive Battery Research Institute Co., Ltd., No. 11 Xingke Dong Street, Huairou District, Beijing 101407, P. R. China.
  • Zhao P; National Power Battery Innovation Center, GRINM Group Corporation Limited (GRINM Group), No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
  • Qi X; China Automotive Battery Research Institute Co., Ltd., No. 11 Xingke Dong Street, Huairou District, Beijing 101407, P. R. China.
  • Wang J; General Research Institute for Nonferrous Metals, No. 2 Xinjiekou Wai Street, Xicheng District, Beijing 100088, P. R. China.
ACS Appl Mater Interfaces ; 16(15): 18980-18990, 2024 Apr 17.
Article em En | MEDLINE | ID: mdl-38577916
ABSTRACT
Although nonflammable electrolytes are beneficial for battery safety, they often adversely affect the electrochemical performance of lithium-ion batteries due to their poor compatibility with electrodes. Herein, we design a nonflammable electrolyte consisting of cyclic carbonate and 2,2-difluoroethyl acetate (DFEA) solvents paired with several surface-film-forming additives, significantly improving the safety and cycling performance of NMC811||SiOx/graphite pouch cells. The DFEA solvent exhibits not only good flame retardancy but also lower lowest unoccupied molecular orbital (LUMO) energy, promoting the formation of a robust inorganic-rich and gradient-architecture hybrid interface between the SiOx/graphite anode and electrolyte. The double insurance of good flame retardancy of the DFEA solvent and decreased exothermic effects of both bulk electrolyte and DFEA-derived solid electrolyte interphase (SEI) can ensure the high safety of the pouch cell. Moreover, the highly robust SEI can prevent the excessive reduction decomposition of the electrolyte and alleviate the structural decay of the anode, which can restrain the formation of lithium deposition on the anode surface and further suppress the structural decay of NMC materials. This contributes to the unprecedented cycling performance of the NMC811||SiOx/graphite pouch cells with a capacity retention of 80% after 1000 cycles at a 0.33C rate.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article