Your browser doesn't support javascript.
loading
Electron-Rich Ru Supported on N-Doped Coffee Biochar for Selective Reductive Amination of Furfural to Furfurylamine.
Gong, Honghui; Wei, Longxing; Li, Qi; Zhang, Juan; Wang, Fei; Ren, Jing; Shi, Xian-Lei.
Afiliação
  • Gong H; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Wei L; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Li Q; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Zhang J; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Wang F; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Ren J; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
  • Shi XL; Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China.
Langmuir ; 40(17): 8950-8960, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38623603
ABSTRACT
Highly selective synthesis of primary amines from renewable biomass has attracted increasing attention, but it still faces great challenges in chemical industry applications. In this study, an electron-rich Ru catalyst was constructed by doping N into coffee biochar using a one-pot carbonization method (Ru/NCB-600). Ru/NCB-600 showed high catalytic activity and yield for the reductive amination of furfural with green and cheap NH3 and H2. The excellent catalytic performance of Ru/NCB-600 was closely correlated to the formation of electron-rich Ruδ- species (Ruδ--Nxδ+), which endowed Ru/NCB-600 with an enhanced H2 adsorption and activation ability. Ru/NCB-600 showed a high formation rate of 95.6 gfurfurylamine·gRu-1·h-1 and a high yield of furfurylamine (98.6%) at 50 °C. Ru/NCB-600 can also be used for the reductive amination of various carbonyl compounds in good to excellent yield (95.4-99%). This study thus provides a potential pathway for the highly selective reductive amination of carbonyl compounds by regulating the electron density of Ru.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article