Your browser doesn't support javascript.
loading
Fine-Tuning Electron-Donor Capability in the Basic Anion of Poly(ionic liquid) Frameworks for Revolutionizing Catalytic Synthesis of Ethyl Methyl Carbonate with Both Ultrahigh Catalytic Activity and Selectivity.
Chen, Jie; Huang, Huiyao; Gong, Wangquan; Chen, Yi; Dong, Rong; Ren, Limei; Qiu, Ting.
Afiliação
  • Chen J; Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
  • Huang H; Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China.
  • Gong W; Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
  • Chen Y; Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China.
  • Dong R; Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
  • Ren L; Engineering Research Center of Reactive Distillation, Fujian Province University, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
  • Qiu T; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
Langmuir ; 40(17): 9233-9243, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38623907
ABSTRACT
Ethyl methyl carbonate (EMC) is a crucial solvent extensively utilized in lithium-ion battery electrolytes; the transesterification of dimethyl carbonate (DMC) with ethanol is a pivotal reaction for EMC production. However, this reaction faces challenges due to the trade-off between catalytic activity and selectivity from the basic catalysts. In this issue, we report an innovative strategy through fine-tuning the electron-donor capability of the basic phenolate anion ([PhO]) in a novel poly(ionic liquid) (PIL) framework, as synthesized via an alkylation reaction between 1,3,5-tris(bromomethyl)benzene, biphenyldiimidazole, and N,N'-carbonyldiimidazole (CDI) to trigger targeted basicity that can directionally catalyze the transesterification of DMC with ethanol, so as to achieve both ultrahigh catalytic activity and selectivity toward EMC. By varying the substituent groups with electron-withdrawing and electron-donating effects on the phenolate anion, the PILs show expected changes in the catalytic performance, following well with the trend of charge density on these substituted phenolate anions. The optimized catalyst [CPIL-CDI][MeOPhO], induced by p-methoxyphenolate anions, allows an extraordinary EMC yield of 72.19% and an EMC selectivity of 91.48% under mild conditions without any process intensifications, suppressing all of the reported catalysts reported to date. Outcomes and approaches shown in this work have the potential to expedite the systematic design of cations and anions within PILs for industrial-scale EMC production through environmentally friendly transesterification processes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article