Your browser doesn't support javascript.
loading
Study of active components and mechanisms mediating the hypolipidemic effect of Inonotus obliquus polysaccharides.
Ding, Guanwen; Guo, Xiao; Li, Xiao; An, Liping; Shi, Huawen.
Afiliação
  • Ding G; Clinical Medical College Harbin Medical University Harbin China.
  • Guo X; School of Pharmacy Beihua University Jilin China.
  • Li X; School of Pharmacy Beihua University Jilin China.
  • An L; School of Pharmacy Beihua University Jilin China.
  • Shi H; Harbin Medical University Cancer Hospital Harbin China.
Food Sci Nutr ; 12(4): 2833-2845, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38628208
ABSTRACT
Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Food Sci Nutr Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Food Sci Nutr Ano de publicação: 2024 Tipo de documento: Article