Your browser doesn't support javascript.
loading
Adaptively resettable microfluidic patch for sweat rate and electrolytes detection.
Liu, Mengyuan; Liu, Siyuan; Zhang, Tong; Zhou, Dengfeng; Li, Lianhui; Gao, Qiang; Liu, Yujie; Ge, Changlei; Wang, Yongfeng; Wang, Mingxu; Wen, Feng; Xiong, Zuoping; Zhou, Zhen; Wang, Shuqi; Zhang, Ting.
Afiliação
  • Liu M; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Liu S; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Zhang T; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Zhou D; Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China.
  • Li L; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Gao Q; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Liu Y; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Ge C; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Wang Y; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Wang M; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Wen F; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
  • Xiong Z; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Suzhou Leansta
  • Zhou Z; Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China.
  • Wang S; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China. Electronic add
  • Zhang T; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum
Biosens Bioelectron ; 257: 116299, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38636318
ABSTRACT
Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 µL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 µL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Suor / Técnicas Biossensoriais / Eletrólitos Limite: Humans Idioma: En Revista: Biosens Bioelectron Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Suor / Técnicas Biossensoriais / Eletrólitos Limite: Humans Idioma: En Revista: Biosens Bioelectron Ano de publicação: 2024 Tipo de documento: Article