Your browser doesn't support javascript.
loading
Four port tri-circular ring MIMO antenna with wide-band characteristics for future 5G and mmWave applications.
Munir, Mehr E; Nasralla, Moustafa M; Esmail, Maged Abdullah.
Afiliação
  • Munir ME; Smart Systems Engineering Lab, Department of Communications and Networks Engineering, Prince Sultan University Riyadh, 145111, Saudi Arabia.
  • Nasralla MM; Smart Systems Engineering Lab, Department of Communications and Networks Engineering, Prince Sultan University Riyadh, 145111, Saudi Arabia.
  • Esmail MA; Smart Systems Engineering Lab, Department of Communications and Networks Engineering, Prince Sultan University Riyadh, 145111, Saudi Arabia.
Heliyon ; 10(8): e28714, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38638997
ABSTRACT
MIMO (Multiple-Input-Multiple-Output) antenna systems are promising for fifth-generation (5G) networks, offering lower latency and higher data rates. These systems utilize millimeter-wave (mmWave) frequency bands for efficient transmission and reception of multiple data simultaneously, enhancing overall efficiency and performance. This article presents a compact size, wide band tri-circular ring mmWave MIMO antenna with suitable performance characteristics for next-generation communication systems. The MIMO system consists of a tri-circular ring patch with slots on a ground plane. The four elements of the antenna are arranged together in the polarization diversity configuration with overall dimensions of 23×18×0.254 mm3, and designed on a 0.254 mm thin, flexible RO5880 substrate with a relative permittivity of 2.3 using Computer Simulation Technology (CST) 2022. The proposed antenna design shows the impedance bandwidth of 14 GHz with isolation >18 dB throughout the 26-40 GHz resonance band. The obtained gain is 6.6 dBi at 28 GHz with radiation efficiency > 90%. Several MIMO parameters are also investigated, such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Diversity Gain (DG), Total Active Reflection Co-efficient (TARC), and Channel Capacity Loss (CCL), and are found to be within the accepted limits for a practical MIMO system. Furthermore, the fabricated MIMO antenna was tested, and the measured results aligned favorably with the simulated results, confirming the suitability of the proposed design. Through the obtained results, the mmWave MIMO antenna is suitable for practical 5G as well as mmWave applications due to its lightweight, simple design, and wideband characteristics, which cover the 5G frequency bands of 26, 28, 32, and 38 GHz.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article