Your browser doesn't support javascript.
loading
Research on the prediction of English topic richness in the context of multimedia data.
Jiao, Jie; Aljuaid, Hanan.
Afiliação
  • Jiao J; Jiaozuo Normal College, Jiaozuo, China.
  • Aljuaid H; Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh, Saudi Arabia.
PeerJ Comput Sci ; 10: e1967, 2024.
Article em En | MEDLINE | ID: mdl-38660161
ABSTRACT
With the evolution of the Internet and multimedia technologies, delving deep into multimedia data for predicting topic richness holds significant practical implications in public opinion monitoring and data discourse power competition. This study introduces an algorithm for predicting English topic richness based on the Transformer model, applied specifically to the Twitter platform. Initially, relevant data is organized and extracted following an analysis of Twitter's characteristics. Subsequently, a feature fusion approach is employed to mine, extract, and construct features from Twitter blogs and users, encompassing blog features, topic features, and user features, which are amalgamated into multimodal features. Lastly, the combined features undergo training and learning using the Transformer model. Through experimentation on the Twitter topic richness dataset, our algorithm achieves an accuracy of 82.3%, affirming the efficacy and superior performance of the proposed approach.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Comput Sci Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PeerJ Comput Sci Ano de publicação: 2024 Tipo de documento: Article