Bayesian analysis of joint quantile regression for multi-response longitudinal data with application to primary biliary cirrhosis sequential cohort study.
Stat Methods Med Res
; 33(7): 1163-1184, 2024 Jul.
Article
em En
| MEDLINE
| ID: mdl-38676359
ABSTRACT
This article proposes a Bayesian approach for jointly estimating marginal conditional quantiles of multi-response longitudinal data with multivariate mixed effects model. The multivariate asymmetric Laplace distribution is employed to construct the working likelihood of the considered model. Penalization priors on regression parameters are incorporated into the working likelihood to conduct Bayesian high-dimensional inference. Markov chain Monte Carlo algorithm is used to obtain the fully conditional posterior distributions of all parameters and latent variables. Monte Carlo simulations are conducted to evaluate the sample performance of the proposed joint quantile regression approach. Finally, we analyze a longitudinal medical dataset of the primary biliary cirrhosis sequential cohort study to illustrate the real application of the proposed modeling method.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Método de Monte Carlo
/
Cadeias de Markov
/
Teorema de Bayes
/
Cirrose Hepática Biliar
Limite:
Humans
Idioma:
En
Revista:
Stat Methods Med Res
Ano de publicação:
2024
Tipo de documento:
Article