Your browser doesn't support javascript.
loading
From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review.
Sant, Vivek R; Radhachandran, Ashwath; Ivezic, Vedrana; Lee, Denise T; Livhits, Masha J; Wu, James X; Masamed, Rinat; Arnold, Corey W; Yeh, Michael W; Speier, William.
Afiliação
  • Sant VR; Division of Endocrine Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
  • Radhachandran A; Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA.
  • Ivezic V; Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA.
  • Lee DT; Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA.
  • Livhits MJ; Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
  • Wu JX; Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
  • Masamed R; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Arnold CW; Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA.
  • Yeh MW; Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
  • Speier W; Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA.
J Clin Endocrinol Metab ; 109(7): 1684-1693, 2024 Jun 17.
Article em En | MEDLINE | ID: mdl-38679750
ABSTRACT
CONTEXT Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. EVIDENCE ACQUISITION A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. EVIDENCE

SYNTHESIS:

A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level

outcomes:

(1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability.

CONCLUSION:

Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration-approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Nódulo da Glândula Tireoide Limite: Humans Idioma: En Revista: J Clin Endocrinol Metab Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Nódulo da Glândula Tireoide Limite: Humans Idioma: En Revista: J Clin Endocrinol Metab Ano de publicação: 2024 Tipo de documento: Article