Your browser doesn't support javascript.
loading
Efficient Homojunction/Heterojunction Photocatalyst via Integrating CsPbBr3 Quantum Dot Homojunction with TiO2 for Degradation of Organic Dyes.
Sun, Chun; Zhao, Yiwei; Ding, Yelin; Zhang, Fuhao; Deng, Zhihui; Lian, Kai; Wang, Zhengtong; Cui, Jiazhi; Bi, Wengang.
Afiliação
  • Sun C; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Zhao Y; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Ding Y; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Zhang F; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Deng Z; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Lian K; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Wang Z; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Cui J; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology. School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China.
  • Bi W; School of Science and Engineering, The Chinese University of Hong Kong, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.
ACS Appl Mater Interfaces ; 16(19): 24806-24815, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38703108
ABSTRACT
A novel TiO2-CsPbBr3(Q) photocatalyst is proposed and rationally constructed, where CsPbBr3 perovskite quantum dots (QDs) of various sizes inside mesopore TiO2 (M-TiO2) are integrated. These perovskite QDs, generated in situ within M-TiO2, establish a type-II homojunction. Interestingly, a Z-scheme heterojunction is simultaneously formed at the interface between CsPbBr3 and TiO2. Due to the coexistence of the type-II homojunction and the Z-scheme heterojunction, photogenerated electrons are effectively transferred from TiO2 to CsPbBr3, thereby suppressing carrier recombination and thus enhancing the degradation of rhodamine B (RhB). Compared with pure CsPbBr3 and TiO2, TiO2-CsPbBr3(Q) shows significantly enhanced photocatalytic performance for RhB degradation. The degradation efficiency of RhB in the presence of the TiO2-CsPbBr3(Q) attains 97.7% in 5 min under light illumination, representing the highest efficiency observed among photocatalysts based on TiO2. This study will facilitate the development of superior semiconductor catalysts for photocatalytic applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article