Your browser doesn't support javascript.
loading
Optimization of stereolithography 3D printing of microneedle micro-molds for ocular drug delivery.
Fitaihi, Rawan; Abukhamees, Shorooq; Chung, Se Hun; Craig, Duncan Q M.
Afiliação
  • Fitaihi R; Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Electronic address: rfitaihi@ksu.edu.sa.
  • Abukhamees S; Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan. Electronic address: sh.abukhamees@
  • Chung SH; Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Academic Centre of Reconstructive Science, King's College London, London, UK. Electronic address: se_hun.chung@kcl.ac.uk.
  • Craig DQM; Research Department of Pharmaceutics, University College London, School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK; Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK. Electronic address: dqmc21@bath.ac.uk.
Int J Pharm ; 658: 124195, 2024 Jun 10.
Article em En | MEDLINE | ID: mdl-38703935
ABSTRACT
Microneedles (MN) have emerged as an innovative technology for drug delivery, offering a minimally invasive approach to administer therapeutic agents. Recent applications have included ocular drug delivery, requiring the manufacture of sub-millimeter needle arrays in a reproducible and reliable manner. The development of 3D printing technologies has facilitated the fabrication of MN via mold production, although there is a paucity of information available regarding how the printing parameters may influence crucial issues such as sharpness and penetration efficacy. In this study, we have developed and optimized a 3D-printed MN micro-mold using stereolithography (SLA) 3D printing to prepare a dissolving ocular MN patch. The effects of a range of parameters including aspect ratio, layer thickness, length, mold shape and printing orientation have been examined with regard to both architecture and printing accuracy of the MN micro-mold, while the effects of printing angle on needle fidelity was also examined for a range of basic shapes (conical, pyramidal and triangular pyramidal). Mechanical strength and in vitro penetration of the polymeric (PVP/PVA) MN patch produced from reverse molds fabricated using MN with a range of shapes and height, and aspect ratios were assessed, followed by ex vivo studies of penetration into excised scleral and corneal tissues. The optimization process identified the parameters required to produce MN with the sharpest tips and highest dimensional fidelity, while the ex vivo studies indicated that these optimized systems would penetrate the ocular tissue with minimal applied pressure, thereby allowing ease of patient self-administration.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Administração Oftálmica / Impressão Tridimensional / Estereolitografia / Agulhas Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas de Liberação de Medicamentos / Administração Oftálmica / Impressão Tridimensional / Estereolitografia / Agulhas Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2024 Tipo de documento: Article