Your browser doesn't support javascript.
loading
Evolving Improved Sampling Protocols for Dose-Response Modelling Using Genetic Algorithms with a Profile-Likelihood Metric.
Lam, Nicholas N; Murray, Rua; Docherty, Paul D.
Afiliação
  • Lam NN; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand. nicholas.lam@pg.canterbury.ac.nz.
  • Murray R; School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
  • Docherty PD; Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
Bull Math Biol ; 86(6): 70, 2024 May 08.
Article em En | MEDLINE | ID: mdl-38717656
ABSTRACT
Practical limitations of quality and quantity of data can limit the precision of parameter identification in mathematical models. Model-based experimental design approaches have been developed to minimise parameter uncertainty, but the majority of these approaches have relied on first-order approximations of model sensitivity at a local point in parameter space. Practical identifiability approaches such as profile-likelihood have shown potential for quantifying parameter uncertainty beyond linear approximations. This research presents a genetic algorithm approach to optimise sample timing across various parameterisations of a demonstrative PK-PD model with the goal of aiding experimental design. The optimisation relies on a chosen metric of parameter uncertainty that is based on the profile-likelihood method. Additionally, the approach considers cases where multiple parameter scenarios may require simultaneous optimisation. The genetic algorithm approach was able to locate near-optimal sampling protocols for a wide range of sample number (n = 3-20), and it reduced the parameter variance metric by 33-37% on average. The profile-likelihood metric also correlated well with an existing Monte Carlo-based metric (with a worst-case r > 0.89), while reducing computational cost by an order of magnitude. The combination of the new profile-likelihood metric and the genetic algorithm demonstrate the feasibility of considering the nonlinear nature of models in optimal experimental design at a reasonable computational cost. The outputs of such a process could allow for experimenters to either improve parameter certainty given a fixed number of samples, or reduce sample quantity while retaining the same level of parameter certainty.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Método de Monte Carlo / Conceitos Matemáticos / Modelos Biológicos Limite: Humans Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Método de Monte Carlo / Conceitos Matemáticos / Modelos Biológicos Limite: Humans Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article