Your browser doesn't support javascript.
loading
Graphitic carbon nitride alleviates cadmium toxicity to soybeans through nitrogen supply.
Hu, Xin; Min, Na; Xu, Kai; Wu, Jiangtao; Wang, Yuying; Yan, Jianfang; Wu, Xilin; Cai, Miaozhen.
Afiliação
  • Hu X; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Min N; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Xu K; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Wu J; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Wang Y; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Yan J; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China. Electronic address: jfyan95@zjnu.edu.cn.
  • Wu X; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
  • Cai M; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China. Electronic address: mzcai@zjnu.cn.
Plant Physiol Biochem ; 211: 108701, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38723489
ABSTRACT
Graphitic carbon nitride (g-C3N4) is a promising candidate for heavy metal remediation, primarily composed of carbon (C) and nitrogen (N). It has been demonstrated that g-C3N4 adjusts rhizosphere physicochemical conditions, especially N conditions, alleviating the absorption and accumulation of Cadmium (Cd) by soybeans. However, the mechanisms by which g-C3N4 induces N alterations to mitigates plant uptake of Cd remain unclear. This study investigated the impact of g-C3N4-mediated changes in N conditions on the accumulation of Cd by soybeans using pot experiments. It also explored the microbiological mechanisms underlying alterations in soybean rhizospheric N cycling induced by g-C3N4. It was found that g-C3N4 significantly increased N content in the soybean rhizosphere (p < 0.05), particularly in terms of available nitrogen (AN) of nitrate and ammonium. Plants absorbed more ammonium nitrogen (NH4⁺-N), the content of which in the roots showed a significant negative correlation with Cd concentration in plant (p < 0.05). Additionally, g-C3N4 significantly affected rhizospheric functional genes associated with N cycling (p < 0.05) by increasing the ratio of the N-fixation functional gene nifH and decreasing the ratios of functional genes amoA and nxrA involved in nitrification. This enhances soybean's N-fixing potential and suppresses denitrification potential in the rhizosphere, preserving NH4⁺-N. Niastella, Flavisolibacter, Opitutus and Pirellula may play a crucial role in the N fixation and preservation process. In summary, the utilization of g-C3N4 offers a novel approach to ensure safe crop production in Cd-contaminated soils. The results of this study provide valuable data and a theoretical foundation for the remediation of Cd polluted soils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glycine max / Cádmio / Rizosfera / Grafite / Nitrogênio Idioma: En Revista: Plant Physiol Biochem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glycine max / Cádmio / Rizosfera / Grafite / Nitrogênio Idioma: En Revista: Plant Physiol Biochem Ano de publicação: 2024 Tipo de documento: Article