Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces.
Nat Commun
; 15(1): 3907, 2024 May 09.
Article
em En
| MEDLINE
| ID: mdl-38724529
ABSTRACT
Transverse thermoelectric effect, the conversion of longitudinal heat current into transverse electric current, or vice versa, offers a promising energy harvesting technology. Materials with axis-dependent conduction polarity, known as p × n-type conductors or goniopolar materials, are potential candidate, because the non-zero transverse elements of thermopower tensor appear under rotational operation, though the availability is highly limited. Here, we report that a ternary metal LaPt2B with unique crystal structure exhibits axis-dependent thermopower polarity, which is driven by mixed-dimensional Fermi surfaces consisting of quasi-one-dimensional hole sheet with out-of-plane velocity and quasi-two-dimensional electron sheets with in-plane velocity. The ideal mixed-dimensional conductor LaPt2B exhibits an extremely large transverse Peltier conductivity up to â£αyx⣠= 130 A K-1 m-1, and its transverse thermoelectric performance surpasses those of topological magnets utilizing the anomalous Nernst effect. These results thus manifest the mixed-dimensionality as a key property for efficient transverse thermoelectric conversion.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Ano de publicação:
2024
Tipo de documento:
Article