Sustained inactivation of the Polycomb PRC1 complex induces DNA repair defects and genomic instability in epigenetic tumors.
Res Sq
; 2024 Apr 24.
Article
em En
| MEDLINE
| ID: mdl-38746379
ABSTRACT
Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancers can also be purely initiated by epigenetic alterations, without driver mutations. Specifically, a 24-hours transient down-regulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to drive epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and are characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 down-regulation is performed for extended periods of time remains unclear. Here we show that prolonged depletion of a PRC1 component, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad mis-regulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs, and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects amplify the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Res Sq
Ano de publicação:
2024
Tipo de documento:
Article