Your browser doesn't support javascript.
loading
Pressure-Dependent Superconductivity in Topological Dirac Semimetal SrCuBi.
Lee, Nahyun; Pei, Cuiying; Koo, Jahyun; Qi, Yanpeng; Kim, Sung Wng.
Afiliação
  • Lee N; Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
  • Pei C; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  • Koo J; ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, China.
  • Qi Y; Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
  • Kim SW; Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
Adv Mater ; 36(29): e2400428, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38747751
ABSTRACT
The discovery of superconducting states in diverse topological materials generates a burgeoning interest to explore a topological superconductor and to realize a fault-tolerant topological quantum computation. A variety of routes to realize topological superconductors are proposed, and many types of topological materials are developed. However, a pristine topological material with a natural superconducting state is relatively rare as compared to topological materials with artificially induced superconductivity. Here, it is reported that the planar honeycomb structured 3D topological Dirac semimetal (TDS) SrCuBi, which is the Zintl phase, shows a natural surface superconductivity at 2.1 K under ambient pressure. It is clearly identified from theoretical calculations that a topologically nontrivial state exists on the (100) surface. Further, its superconducting transition temperature (Tc) increases by applying pressure, exhibiting a maximal Tc of 4.8 K under 6.2 GPa. It is believed that this discovery opens up a new possibility of exploring exotic Majorana fermions at the surface of 3D TDS superconductors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article