Your browser doesn't support javascript.
loading
Machine learning algorithm predicts urethral stricture following transurethral prostate resection.
Altintas, Emre; Sahin, Ali; Babayev, Huseyn; Gül, Murat; Batur, Ali Furkan; Kaynar, Mehmet; Kiliç, Özcan; Göktas, Serdar.
Afiliação
  • Altintas E; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey. dr.e.altintas@gmail.com.
  • Sahin A; Faculty of Medicine, Selcuk University, Konya, Turkey.
  • Babayev H; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
  • Gül M; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey.
  • Batur AF; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey.
  • Kaynar M; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey.
  • Kiliç Ö; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey.
  • Göktas S; Faculty of Medicine, Department of Urology, Selcuk University, Tip Fakültesi Alaeddin Keykubat Yerleskesi Selçuklu, Konya, 42131, Turkey.
World J Urol ; 42(1): 324, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38748256
ABSTRACT

PURPOSE:

To predict the post transurethral prostate resection(TURP) urethral stricture probability by applying different machine learning algorithms using the data obtained from preoperative blood parameters.

METHODS:

A retrospective analysis of data from patients who underwent bipolar-TURP encompassing patient characteristics, preoperative routine blood test outcomes, and post-surgery uroflowmetry were used to develop and educate machine learning models. Various metrics, such as F1 score, model accuracy, negative predictive value, positive predictive value, sensitivity, specificity, Youden Index, ROC AUC value, and confidence interval for each model, were used to assess the predictive performance of machine learning models for urethral stricture development.

RESULTS:

A total of 109 patients' data (55 patients without urethral stricture and 54 patients with urethral stricture) were included in the study after implementing strict inclusion and exclusion criteria. The preoperative Platelet Distribution Width, Mean Platelet Volume, Plateletcrit, Activated Partial Thromboplastin Time, and Prothrombin Time values were statistically meaningful between the two cohorts. After applying the data to the machine learning systems, the accuracy prediction scores for the diverse algorithms were as follows decision trees (0.82), logistic regression (0.82), random forests (0.91), support vector machines (0.86), K-nearest neighbors (0.82), and naïve Bayes (0.77).

CONCLUSION:

Our machine learning models' accuracy in predicting the post-TURP urethral stricture probability has demonstrated significant success. Exploring prospective studies that integrate supplementary variables has the potential to enhance the precision and accuracy of machine learning models, consequently progressing their ability to predict post-TURP urethral stricture risk.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Complicações Pós-Operatórias / Estreitamento Uretral / Algoritmos / Ressecção Transuretral da Próstata / Aprendizado de Máquina Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: World J Urol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Complicações Pós-Operatórias / Estreitamento Uretral / Algoritmos / Ressecção Transuretral da Próstata / Aprendizado de Máquina Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: World J Urol Ano de publicação: 2024 Tipo de documento: Article