Your browser doesn't support javascript.
loading
LncRNA HOTAIR promotes the migration and invasion of cervical cancer through DNMT3B/LATS1/ YAP1 pS127 axis.
Zhang, Zhihao; Zhou, Xianyi; Li, Jiulin; Meng, Qinghui; Zheng, Peng.
Afiliação
  • Zhang Z; College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China.
  • Zhou X; College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China.
  • Li J; College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China.
  • Meng Q; Qianjiang Center for Disease Control and Prevention, Chongqing 40900, China. Electronic address: 30568853@qq.com.
  • Zheng P; College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address: pengzh1984@wust.edu.cn.
Reprod Biol ; 24(2): 100893, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38754347
ABSTRACT
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. As a critical regulator of the Hippo pathway, the phosphorylation status of Yes-associated protein 1 (YAP1), mainly at S127, is critical for its oncogenic function. Herein, we aim to investigate the precise molecular mechanism between long noncoding RNA HOX transcript antisense RNA (HOTAIR) and YAP1 phosphorylation in regulating tumor migration and invasion. In this study, we showed that inhibition of HOTAIR significantly decreased the migration and invasion of cancer cells both in vitro and in vivo through elevating the phosphorylation level of YAP1 on serine 127, demonstrating a tumor suppressive role of YAP1 S127 phosphorylation. Through bisulfite sequencing PCR (BSP), we found that inhibition of HOTAIR dramatically increased Large Tumor Suppressor Kinase 1 (LATS1) expression by regulating LATS1 methylation via DNA methyltransferase 3ß (DNMT3B). In accordance with this observation, DNMT3B just only altered the distribution of YAP1 in the cytoplasm and the nucleus by inhibiting its phosphorylation, but did not change its total expression. Mechanistically, we discovered that HOTAIR suppressed YAP1 S127 phosphorylation by regulating the methylation of LATS1 via DNMT3B, the consequence of which is the translocation of YAP1 into the nucleus, reinforcing its coactivating transcriptional function, which in turn promotes the migration and invasion of cancer cells. Collectively, our data reveal that the phosphorylation of YAP1 S127 plays a vital role in the function of HOTAIR in tumorigenicity, and should be taken into consideration in future therapeutic strategies for cervical cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Movimento Celular / Neoplasias do Colo do Útero / Proteínas Serina-Treonina Quinases / Proteínas Adaptadoras de Transdução de Sinal / DNA (Citosina-5-)-Metiltransferases / RNA Longo não Codificante / Proteínas de Sinalização YAP / DNA Metiltransferase 3B / Invasividade Neoplásica Limite: Animals / Female / Humans Idioma: En Revista: Reprod Biol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Movimento Celular / Neoplasias do Colo do Útero / Proteínas Serina-Treonina Quinases / Proteínas Adaptadoras de Transdução de Sinal / DNA (Citosina-5-)-Metiltransferases / RNA Longo não Codificante / Proteínas de Sinalização YAP / DNA Metiltransferase 3B / Invasividade Neoplásica Limite: Animals / Female / Humans Idioma: En Revista: Reprod Biol Ano de publicação: 2024 Tipo de documento: Article