Your browser doesn't support javascript.
loading
Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency.
Puszkarska, Anna M; Taddese, Bruck; Revell, Jefferson; Davies, Graeme; Field, Joss; Hornigold, David C; Buchanan, Andrew; Vaughan, Tristan J; Colwell, Lucy J.
Afiliação
  • Puszkarska AM; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Taddese B; Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK.
  • Revell J; Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
  • Davies G; Biologics Center (NBC) at the Novartis Institute for BioMedical Research (NIBR), Basel, Switzerland.
  • Field J; Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
  • Hornigold DC; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Buchanan A; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Vaughan TJ; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Colwell LJ; Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK.
Nat Chem ; 16(9): 1436-1444, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38755312
ABSTRACT
Several peptide dual agonists of the human glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R) are in development for the treatment of type 2 diabetes, obesity and their associated complications. Candidates must have high potency at both receptors, but it is unclear whether the limited experimental data available can be used to train models that accurately predict the activity at both receptors of new peptide variants. Here we use peptide sequence data labelled with in vitro potency at human GCGR and GLP-1R to train several models, including a deep multi-task neural-network model using multiple loss optimization. Model-guided sequence optimization was used to design three groups of peptide variants, with distinct ranges of predicted dual activity. We found that three of the model-designed sequences are potent dual agonists with superior biological activity. With our designs we were able to achieve up to sevenfold potency improvement at both receptors simultaneously compared to the best dual-agonist in the training set.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Glucagon / Receptor do Peptídeo Semelhante ao Glucagon 1 / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Nat Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Glucagon / Receptor do Peptídeo Semelhante ao Glucagon 1 / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Nat Chem Ano de publicação: 2024 Tipo de documento: Article