Your browser doesn't support javascript.
loading
Persistent glossopharyngeal nerve respiratory discharge patterns after ponto-medullary transection.
Kola, Gijnovefa; Hamada, Eriko; Dhingra, Rishi R; Jacono, Frank J; Dick, Thomas E; Dewald, Denise; Strohl, Kingman P; Fleury-Curado, Thomaz; Dutschmann, Mathias.
Afiliação
  • Kola G; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA.
  • Hamada E; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
  • Dhingra RR; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
  • Jacono FJ; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Pulmonary Section, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
  • Dick TE; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
  • Dewald D; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44130, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA.
  • Strohl KP; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve Univers
  • Fleury-Curado T; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Department of Otolaryngology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
  • Dutschmann M; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve Univers
Respir Physiol Neurobiol ; 327: 104281, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38768741
ABSTRACT
Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA. Brainstem transections were performed (n=10/19) to explore the role of pontomedullary synaptic interactions in generating GPNA. GPNA generally mirrors FNA and HNA discharge patterns and displays pre-inspiratory activity relative to the PNA, followed by robust inspiratory discharge in coincidence with PNA. Postinspiratory (early expiratory) discharge was, contrary to VNA, generally absent in FNA, GPNA or HNA. As described previously FNA and HNA discharge was virtually eliminated after pontomedullary transection while an apneustic inspiratory motor discharge was maintained in PNA, VNA and GPNA. After brainstem transection GPNA displayed an increased tonic activity starting during mid-expiration and thus developed prolonged pre-inspiratory activity compared to control. In conclusion respiratory GPNA reflects FNA and HNA which implies similar function in controlling upper airway patency during breathing. That GPNA preserved its pre-inspiratory/inspiratory discharge pattern in relation PNA after pontomedullary transection suggest that GPNA premotor circuits may have a different anatomical distribution compared HNA and FNA and thus may therefore hold a unique role in preserving airway patency.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nervo Glossofaríngeo Limite: Animals Idioma: En Revista: Respir Physiol Neurobiol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nervo Glossofaríngeo Limite: Animals Idioma: En Revista: Respir Physiol Neurobiol Ano de publicação: 2024 Tipo de documento: Article