Your browser doesn't support javascript.
loading
Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical-polluted groundwater.
Zhang, Ruihuan; Ye, Zhencheng; Guo, Xue; Yang, Yunfeng; Li, Guanghe.
Afiliação
  • Zhang R; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
  • Ye Z; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
  • Guo X; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Yang Y; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. Electronic address: yangy
  • Li G; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Environ Int ; 188: 108755, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38772206
ABSTRACT
The rapid advance in shotgun metagenome sequencing has enabled us to identify uncultivated functional microorganisms in polluted environments. While aerobic petrochemical-degrading pathways have been extensively studied, the anaerobic mechanisms remain less explored. Here, we conducted a study at a petrochemical-polluted groundwater site in Henan Province, Central China. A total of twelve groundwater monitoring wells were installed to collect groundwater samples. Benzene appeared to be the predominant pollutant, detected in 10 out of 12 samples, with concentrations ranging from 1.4 µg/L to 5,280 µg/L. Due to the low aquifer permeability, pollutant migration occurred slowly, resulting in relatively low benzene concentrations downstream within the heavily polluted area. Deep metagenome sequencing revealed Proteobacteria as the dominant phylum, accounting for over 63 % of total abundances. Microbial α-diversity was low in heavily polluted samples, with community compositions substantially differing from those in lightly polluted samples. dmpK encoding the phenol/toluene 2-monooxygenase was detected across all samples, while the dioxygenase bedC1 was not detected, suggesting that aerobic benzene degradation might occur through monooxygenation. Sequence assembly and binning yielded 350 high-quality metagenome-assembled genomes (MAGs), with 30 MAGs harboring functional genes associated with aerobic or anaerobic benzene degradation. About 80 % of MAGs harboring functional genes associated with anaerobic benzene degradation remained taxonomically unclassified at the genus level, suggesting that our current database coverage of anaerobic benzene-degrading microorganisms is very limited. Furthermore, two genes integral to anaerobic benzene metabolism, i.e, benzoyl-CoA reductase (bamB) and glutaryl-CoA dehydrogenase (acd), were not annotated by metagenome functional analyses but were identified within the MAGs, signifying the importance of integrating both contig-based and MAG-based approaches. Together, our efforts of functional annotation and metagenome binning generate a robust blueprint of microbial functional potentials in petrochemical-polluted groundwater, which is crucial for designing proficient bioremediation strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Benzeno / Água Subterrânea / Biodegradação Ambiental / Redes e Vias Metabólicas País/Região como assunto: Asia Idioma: En Revista: Environ Int Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Benzeno / Água Subterrânea / Biodegradação Ambiental / Redes e Vias Metabólicas País/Região como assunto: Asia Idioma: En Revista: Environ Int Ano de publicação: 2024 Tipo de documento: Article