Your browser doesn't support javascript.
loading
Fabrication of Perfluoropolyether Microfluidic Devices Using Laser Engraving for Uniform Droplet Production.
Kim, Eun Seo; Cho, Mincheol; Choi, Inseong; Choi, Sung-Wook.
Afiliação
  • Kim ES; Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea.
  • Cho M; Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea.
  • Choi I; Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea.
  • Choi SW; Department of Biotechnology, Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Article em En | MEDLINE | ID: mdl-38793172
ABSTRACT
A perfluoropolyether (PFPE)-based microfluidic device with cross-junction microchannels was fabricated with the purpose of producing uniform droplets. The microchannels were developed using CO2 laser engraving. PFPE was chosen as the main material because of its excellent solvent resistance. Polyethylene glycol diacrylate (PEGDA) was mixed with PFPE to improve the hydrophilic properties of the inner surface of the microchannels. The microchannels of the polydimethylsiloxane microfluidic device had a blackened and rough surface after laser engraving. By contrast, the inner surface of the microchannels of the PFPE-PEGDA microfluidic device exhibited a smooth surface. The lower power and faster speed of the laser engraving resulted in the development of microchannels with smaller dimensions, less than 30 µm in depth. The PFPE and PFPE-PEGDA microfluidic devices were used to produce uniform water and oil droplets, respectively. We believe that such a PFPE-based microfluidic device with CO2-laser-engraved microchannels can be used as a microfluidic platform for applications in various fields, such as biological and chemical analysis, extraction, and synthesis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2024 Tipo de documento: Article