Your browser doesn't support javascript.
loading
Systematic identification and analysis of immune-related circRNAs of Pelteobagrus fulvidraco involved in Aeromonas veronii infection.
He, Yongxin; Ma, Lina; Zeng, Xueyu; Xie, Jingjing; Ning, Xianhui.
Afiliação
  • He Y; College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
  • Ma L; College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
  • Zeng X; College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
  • Xie J; College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
  • Ning X; College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Li
Article em En | MEDLINE | ID: mdl-38797004
ABSTRACT
Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes-Gato / Infecções por Bactérias Gram-Negativas / Doenças dos Peixes / Aeromonas veronii / RNA Circular Limite: Animals Idioma: En Revista: Comp Biochem Physiol Part D Genomics Proteomics Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixes-Gato / Infecções por Bactérias Gram-Negativas / Doenças dos Peixes / Aeromonas veronii / RNA Circular Limite: Animals Idioma: En Revista: Comp Biochem Physiol Part D Genomics Proteomics Ano de publicação: 2024 Tipo de documento: Article