Your browser doesn't support javascript.
loading
Hourly land-use regression modeling for NO2 and PM2.5 in the Netherlands.
Ndiaye, Aisha; Shen, Youchen; Kyriakou, Kalliopi; Karssenberg, Derek; Schmitz, Oliver; Flückiger, Benjamin; Hoogh, Kees de; Hoek, Gerard.
Afiliação
  • Ndiaye A; Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Pobox 80125, 3508, TC Utrecht, the Netherlands. Electronic address: a.ndiaye@uu.nl.
  • Shen Y; Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Pobox 80125, 3508, TC Utrecht, the Netherlands.
  • Kyriakou K; Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Pobox 80125, 3508, TC Utrecht, the Netherlands.
  • Karssenberg D; Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
  • Schmitz O; Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
  • Flückiger B; Swiss Tropical and Public Health Institute, Kreuzstrasse 2 CH-4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, Postfach, 4001, Basel, Switzerland.
  • Hoogh K; Swiss Tropical and Public Health Institute, Kreuzstrasse 2 CH-4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, Postfach, 4001, Basel, Switzerland.
  • Hoek G; Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Pobox 80125, 3508, TC Utrecht, the Netherlands.
Environ Res ; 256: 119233, 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-38802030
ABSTRACT
Annual average land-use regression (LUR) models have been widely used to assess spatial patterns of air pollution exposures. However, they fail to capture diurnal variability in air pollution and consequently might result in biased dynamic exposure assessments. In this study we aimed to model average hourly concentrations for two major pollutants, NO2 and PM2.5, for the Netherlands using the LUR algorithm. We modelled the spatial variation of average hourly concentrations for the years 2016-2019 combined, for two seasons, and for two weekday types. Two modelling approaches were used, supervised linear regression (SLR) and random forest (RF). The potential predictors included population, road, land use, satellite retrievals, and chemical transport model pollution estimates variables with different buffer sizes. We also temporally adjusted hourly concentrations from a 2019 annual model using the hourly monitoring data, to compare its performance with the hourly modelling approach. The results showed that hourly NO2 models performed overall well (5-fold cross validation R2 = 0.50-0.78), while the PM2.5 performed moderately (5-fold cross validation R2 = 0.24-0.62). Both for NO2 and PM2.5 the warm season models performed worse than the cold season ones, and the weekends' worse than weekdays'. The performance of the RF and SLR models was similar for both pollutants. For both SLR and RF, variables with larger buffer sizes representing variation in background concentrations, were selected more often in the weekend models compared to the weekdays, and in the warm season compared to the cold one. Temporal adjustment of annual average models performed overall worse than both modelling approaches (NO2 hourly R2 = 0.35-0.70; PM2.5 hourly R2 = 0.01-0.15). The difference in model performance and selection of variables across hours, seasons, and weekday types documents the benefit to develop independent hourly models when matching it to hourly time activity data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estações do Ano / Monitoramento Ambiental / Poluentes Atmosféricos / Poluição do Ar / Material Particulado / Dióxido de Nitrogênio País/Região como assunto: Europa Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estações do Ano / Monitoramento Ambiental / Poluentes Atmosféricos / Poluição do Ar / Material Particulado / Dióxido de Nitrogênio País/Região como assunto: Europa Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article