Your browser doesn't support javascript.
loading
Prediction of inhibitor development in previously untreated and minimally treated children with severe and moderately severe hemophilia A using a machine-learning network.
Jardim, Letícia Lemos; Schieber, Tiago A; Santana, Marcio Portugal; Cerqueira, Mônica Hermida; Lorenzato, Claudia Santos; Franco, Vivian Karla Brognoli; Zuccherato, Luciana Werneck; da Silva Santos, Brendon Ayala; Chaves, Daniel Gonçalves; Ravetti, Martín Gomez; Rezende, Suely Meireles.
Afiliação
  • Jardim LL; Instituto René Rachou (Fiocruz Minas), Belo Horizonte, Minas Gerais, Brazil; Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands.
  • Schieber TA; Faculdade de Ciências Econômicas, School of Economics, Universidade Federal de Minas Gerais, Brazil.
  • Santana MP; Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil.
  • Cerqueira MH; Instituto de Hematologia Arthur de Siqueira Cavalcanti, Rio de Janeiro, Brazil.
  • Lorenzato CS; Centro de Hematologia e Hemoterapia do Paraná, Curitiba, Brazil.
  • Franco VKB; Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, Brazil.
  • Zuccherato LW; Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • da Silva Santos BA; Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • Chaves DG; Fundação Hemominas, Belo Horizonte, Minas Gerais, Brazil.
  • Ravetti MG; Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
  • Rezende SM; Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address: suely.rezende@uol.com.br.
J Thromb Haemost ; 22(9): 2426-2437, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38810700
ABSTRACT

BACKGROUND:

Prediction of inhibitor development in patients with hemophilia A (HA) remains a challenge.

OBJECTIVES:

To construct a predictive model for inhibitor development in HA using a network of clinical variables and biomarkers based on the individual similarity network.

METHODS:

Previously untreated and minimally treated children with severe/moderately severe HA, participants of the HEMFIL Cohort Study, were followed up until reaching 75 exposure days (EDs) without inhibitor (INH-) or upon inhibitor development (INH+). Clinical data and biological samples were collected before the start of factor (F)VIII replacement (T0). A predictive model (HemfilNET) was built to compare the networks and potential global topological differences between INH- and INH+ at T0, considering the network robustness. For validation, the "leave-one-out" cross-validation technique was employed. Accuracy, precision, recall, and F1-score were used as evaluation metrics for the machine-learning model.

RESULTS:

We included 95 children with HA (CHA), of whom 31 (33%) developed inhibitors. The algorithm, featuring 37 variables, identified distinct patterns of networks at T0 for INH+ and INH-. The accuracy of the model was 74.2% for CHA INH+ and 98.4% for INH-. By focusing the analysis on CHA with high-risk F8 mutations for inhibitor development, the accuracy in identifying CHA INH+ increased to 82.1%.

CONCLUSION:

Our machine-learning algorithm demonstrated an overall accuracy of 90.5% for predicting inhibitor development in CHA, which further improved when restricting the analysis to CHA with a high-risk F8 genotype. However, our model requires validation in other cohorts. Yet, missing data for some variables hindered more precise predictions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Índice de Gravidade de Doença / Fator VIII / Aprendizado de Máquina / Hemofilia A Limite: Adolescent / Child / Child, preschool / Humans / Infant / Male Idioma: En Revista: J Thromb Haemost Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Índice de Gravidade de Doença / Fator VIII / Aprendizado de Máquina / Hemofilia A Limite: Adolescent / Child / Child, preschool / Humans / Infant / Male Idioma: En Revista: J Thromb Haemost Ano de publicação: 2024 Tipo de documento: Article