Your browser doesn't support javascript.
loading
Unraveling the Structure-Activity-Stability Relationship over Gallium-Promoted HZSM-5 Nanocrystalline Aggregates for Propane Aromatization.
Wu, Yiheng; Lv, Yangping; Wang, Ruipu; Bao, Lixia; Zhang, Zhongdong; Shi, Dejun; Zhang, Anlv; Zhang, Yaoyuan; Liu, Qi; Wu, Qin; Shi, Daxin; Chen, Kangcheng; Jiang, Guiyuan; Li, Hansheng.
Afiliação
  • Wu Y; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Lv Y; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Wang R; Petrochemical Research Institute, PetroChina, Beijing 102206, China.
  • Bao L; Analysis and Testing Center, Beijing Institute of Technology, Beijing 102488, China.
  • Zhang Z; Petrochemical Research Institute, PetroChina, Beijing 102206, China.
  • Shi D; Petrochemical Research Institute, PetroChina, Beijing 102206, China.
  • Zhang A; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Zhang Y; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Liu Q; State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China.
  • Wu Q; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Shi D; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Chen K; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Jiang G; State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China.
  • Li H; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Langmuir ; 40(23): 11998-12008, 2024 Jun 11.
Article em En | MEDLINE | ID: mdl-38814080
ABSTRACT
The aromatization of light alkane is an important process for increasing the aromatic production and utilization efficiency of light alkane resources simultaneously. Herein, Ga-modified HZSM-5 catalysts were prepared and investigated by a series of characterization techniques such as X-ray diffraction, nuclear magnetic resonance spectroscopy, transmission electron microscopy, N2 adsorption-desorption, and NH3 temperature-programmed desorption to study their physicochemical properties. The catalytic performance in propane aromatization was also tested. Importantly, the structure-activity relationship, reaction pathway, and coke formation mechanism in propane aromatization were systematically explored. It was found that different Ga introduction methods would affect the amounts of Brønsted and Lewis acid sites, and Ga-HZSM-5 prepared by the hydrothermal method exhibited higher amounts of Brønsted and Lewis acid sites but a lower B/L ratio. As a result, Ga-HZSM-5 showed higher propane conversion and benzene, toluene, and xylene yield compared with that of Ga2O3/HZSM-5. The propane aromatization reaction pathway indicated that propane dehydrogenation to propene was a crucial step for aromatic formation. The increase of the Lewis acid density in Ga-HZSM-5 can effectively improve the dehydrogenation rate and promote the aromatization reaction. Furthermore, the formation of coke species was studied by thermogravimetry-mass spectrometry and Raman approaches, the results of which indicated that the graphitization degree of coke formed over spent Ga-HZSM-5 is lower, resulting in enhanced anticoking stability.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2024 Tipo de documento: Article