Your browser doesn't support javascript.
loading
Unveiling MiRNA-124 as a biomarker in hypertrophic cardiomyopathy: An innovative approach using machine learning and intelligent data analysis.
Pisklova, Maria; Osmak, German.
Afiliação
  • Pisklova M; E.I. Chazov National Medical Research Center for Cardiology, Academician Chazov st. 15a, 121552 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov st. 1, 117997 Moscow, Russia.
  • Osmak G; E.I. Chazov National Medical Research Center for Cardiology, Academician Chazov st. 15a, 121552 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov st. 1, 117997 Moscow, Russia. Electronic address: german.osmak@gmail.com.
Int J Cardiol ; 410: 132220, 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-38815672
ABSTRACT

BACKGROUND:

Hypertrophic cardiomyopathy (HCM) is a widespread hereditary cardiac pathology characterized by thickened heart walls and rearrangement of cardiomyocytes. Despite extensive research, the mechanisms underlying HCM development remain poorly understood, impeding the development of effective therapeutic and diagnostic strategies. Recent studies have suggested a polygenic nature of HCM development alongside monogenic forms. Transcriptomic profiling is a valuable tool for investigating such diseases. In this study, we propose a novel approach to study regulatory microRNAs (miRNAs) in the context of HCM, utilizing state-of-the-art data analysis tools. METHODS AND

RESULTS:

Our method involves applying the Monte Carlo simulation and machine learning algorithm to transcriptomic data to generate high-capacity classifiers for HCM. From these classifiers, we extract key genes crucial for their performance, resulting in the identification of 16 key genes. Subsequently, we narrow down the pool of miRNAs by selecting those that may target the greatest number of key genes within the best models. We particularly focused on miR-124-3p, which we validated to have an association with HCM on an independent dataset. Subsequent investigation of its function revealed involvement of miR-124-3p in the RhoA signaling pathway.

CONCLUSIONS:

In this study we propose a new approach to analyze transcriptomic data to search for microRNAs associated with a disease. Using this approach for transcriptomic profiling data of patients with HCM, we identified miR-124-3p as a potential regulator of the RhoA signaling pathway in the pathogenesis of HCM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cardiomiopatia Hipertrófica / MicroRNAs / Aprendizado de Máquina Limite: Female / Humans / Male Idioma: En Revista: Int J Cardiol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cardiomiopatia Hipertrófica / MicroRNAs / Aprendizado de Máquina Limite: Female / Humans / Male Idioma: En Revista: Int J Cardiol Ano de publicação: 2024 Tipo de documento: Article