Your browser doesn't support javascript.
loading
Theoretical Investigation of the Lattice Thermal Conductivities of II-IV-V2 Pnictide Semiconductors.
Posligua, Victor; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez; Grau-Crespo, Ricardo.
Afiliação
  • Posligua V; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Plata JJ; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Márquez AM; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Sanz JF; Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.
  • Grau-Crespo R; Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, U.K.
ACS Appl Electron Mater ; 6(5): 2951-2959, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38828038
ABSTRACT
Ternary pnictide semiconductors with II-IV-V2 stoichiometry hold potential as cost-effective thermoelectric materials with suitable electronic transport properties, but their lattice thermal conductivities (κ) are typically too high. Insights into their vibrational properties are therefore crucial to finding strategies to reduce κ and achieve improved thermoelectric performance. We present a theoretical exploration of the lattice thermal conductivities for a set of pnictide semiconductors with ABX2 composition (A = Zn, Cd; B = Si, Ge, Sn; and X = P, As) using machine-learning-based regression algorithms to extract force constants from a reduced number of density functional theory simulations and then solving the Boltzmann transport equation for phonons. Our results align well with available experimental data, decreasing the mean absolute error by ∼3 W m-1 K-1 with respect to the best previous set of theoretical predictions. Zn-based ternary pnictides have, on average, more than double the thermal conductivity of the Cd-based compounds. Anisotropic behavior increases with the mass difference between A and B cations, but while the nature of the anion does not affect the structural anisotropy, the thermal conductivity anisotropy is typically higher for arsenides than for phosphides. We identify compounds such as CdGeAs2, for which nanostructuring to an affordable range of particle sizes could lead to κ values low enough for thermoelectric applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Electron Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Electron Mater Ano de publicação: 2024 Tipo de documento: Article