On the fluid drag reduction in scallop surface.
Eur Phys J E Soft Matter
; 47(6): 38, 2024 Jun 03.
Article
em En
| MEDLINE
| ID: mdl-38829470
ABSTRACT
In the field of biomimetics, the tiny riblet structures inspired by shark skin have been extensively studied for their drag reduction properties in turbulent flows. Here, we show that the ridged surface texture of another swimming creature in the ocean, i.e., the scallops, also has some friction drag reduction effect. In this study, we investigated the potential drag reduction effects of scallop shell textures using computational fluid dynamics simulations. Specifically, we constructed a conceptual model featuring an undulating surface pattern on a conical shell geometry that mimics scallop. Simulations modeled turbulent fluid flows over the model inserted at different orientations relative to the flow direction. The results demonstrate appreciable friction drag reduction generated by the ribbed hierarchical structures encasing the scallop, while partial pressure drag reduction exhibits dependence on alignment of scallop to the predominant flow direction. Theoretical mechanisms based on classic drag reduction theory in turbulence was established to explain the drag reduction phenomena. Given the analogous working environments of scallops and seafaring vessels, these findings may shed light on the biomimetic design of surface textures to enhance maritime engineering applications. Besides, this work elucidates an additional evolutionary example of fluid drag reduction, expanding the biological repertoire of swimming species.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Eur Phys J E Soft Matter
Ano de publicação:
2024
Tipo de documento:
Article