Your browser doesn't support javascript.
loading
Step-by-step optimisation of the radiosynthesis of the brain HDAC6 radioligand [18F]FSW-100 for clinical applications.
Tago, Tetsuro; Toyohara, Jun.
Afiliação
  • Tago T; Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
  • Toyohara J; Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan. toyohara@pet.tmig.or.jp.
EJNMMI Radiopharm Chem ; 9(1): 45, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38831171
ABSTRACT

BACKGROUND:

Histone deacetylase 6 (HDAC6) is an emerging target for the treatment and diagnosis of proteinopathies. [18F]FSW-100 was recently developed as a promising brain-penetrating radioligand for HDAC6 PET imaging and the process validation of [18F]FSW-100 radiosynthesis for clinical use is complete, but no detailed synthetic strategy nor process optimisation has been reported. Here, we describe the optimisation of several processes in [18F]FSW-100 radiosynthesis, including the 18F-fluorination reaction, semipurification of the 18F-intermediate, and purification of the product by high-performance liquid chromatography (HPLC), to achieve a radiochemical yield (RCY) adequate for clinical applications of the radioligand. Our findings will aid optimisation of radiosynthesis processes in general.

RESULTS:

In the 18F-fluorination reaction, the amount of copper reagent was reduced without reducing the nonisolated RCY of the intermediate (50%), thus reducing the risk of copper contamination in the product injection solution. Optimising the solid-phase extraction (SPE) conditions for semipurification of the intermediate improved its recovery efficiency. The addition of anti-radiolysis reagents to the mobile phase for the HPLC purification of [18F]FSW-100 increased its activity yield in radiosynthesis using a high [18F]fluoride radioactivity of approximately 50 GBq. The SPE-based formulation method and additives for the injection solution were optimised, and the resulting [18F]FSW-100 injection solution was stable for over 2 h with a radiochemical purity of greater than 95%.

CONCLUSIONS:

Of all the reconsidered processes, we found that optimisation of the SPE-based semipurification of the intermediate and of the mobile phase for HPLC purification in particular improved the RCY of [18F]FSW-100, doubling it compared to that of the original protocol. The radioactivity of [18F]FSW-100 synthesized using the optimized protocol was sufficient for multiple doses for a clinical study.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: EJNMMI Radiopharm Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: EJNMMI Radiopharm Chem Ano de publicação: 2024 Tipo de documento: Article