Your browser doesn't support javascript.
loading
Exploration of new space elicits phosphorylation of GluA1(Ser831) and S6K and expression of Arc in the hippocampus in vivo as in long-term potentiation.
Cagnetta, Roberta; Lacaille, Jean-Claude; Sonenberg, Nahum.
Afiliação
  • Cagnetta R; Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA. roberta_cagnetta@hms.harvard.edu.
  • Lacaille JC; Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada. roberta_cagnetta@hms.harvard.edu.
  • Sonenberg N; Department of Neurosciences, Center for Interdisciplinary Research On Brain and Learning, Research Group On Neural Signaling and Circuitry, University of Montreal, Montreal, QC, H3T1J4, Canada.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Article em En | MEDLINE | ID: mdl-38858726
ABSTRACT
The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de AMPA / Potenciação de Longa Duração / Proteínas do Citoesqueleto / Hipocampo / Proteínas do Tecido Nervoso Limite: Animals Idioma: En Revista: Mol Brain Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de AMPA / Potenciação de Longa Duração / Proteínas do Citoesqueleto / Hipocampo / Proteínas do Tecido Nervoso Limite: Animals Idioma: En Revista: Mol Brain Ano de publicação: 2024 Tipo de documento: Article