Your browser doesn't support javascript.
loading
Upcycling CO2 into succinic acid via electrochemical and engineered Escherichia coli.
Gong, Zhijin; Zhang, Wei; Chen, Jiayao; Li, Jingchuan; Tan, Tianwei.
Afiliação
  • Gong Z; National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
  • Zhang W; National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
  • Chen J; National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
  • Li J; National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
  • Tan T; National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. El
Bioresour Technol ; 406: 130956, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38871229
ABSTRACT
Converting CO2 into value-added chemicals still remains a grand challenge. Succinic acid has long been considered as one of the top building block chemicals. This study reported efficiently upcycling CO2 into succinic acid by combining between electrochemical and engineered Escherichia coli. In this process, the Cu-organic framework catalyst was synthesized for electrocatalytic CO2-to-ethanol conversion with high Faradaic efficiency (FE, 84.7 %) and relative purity (RP, 95 wt%). Subsequently, an engineered E. coli with efficiently assimilating CO2-derived ethanol to produce succinic acid was constructed by combining computational design and metabolic engineering, and the succinic acid titer reached 53.8 mM with the yield of 0.41 mol/mol, which is 82 % of the theoretical yield. This study effort to link the two processes of efficient ethanol synthesis by electrocatalytic CO2 and succinic acid production from CO2-derived ethanol, paving a way for the production of succinic acid and other value-added chemicals by converting CO2 into ethanol.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Ácido Succínico / Etanol / Escherichia coli / Engenharia Metabólica Idioma: En Revista: Bioresour Technol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Ácido Succínico / Etanol / Escherichia coli / Engenharia Metabólica Idioma: En Revista: Bioresour Technol Ano de publicação: 2024 Tipo de documento: Article