Your browser doesn't support javascript.
loading
Transcriptomic-metabolomic analysis reveals the effect of copper toxicity on fermentation properties in Saccharomyces cerevisiae.
Que, Zhiluo; Wei, Mengyuan; Jiang, Wenguang; Ma, Tingting; Zhang, Wen; Zhao, Zixian; Yan, Yue; Yang, Yafan; Fang, Yulin; Sun, Xiangyu.
Afiliação
  • Que Z; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 61006
  • Wei M; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China.
  • Jiang W; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China; Ningxia Chanyyu Longyu Estate Co. Ltd., Yinchuan 750002, China.
  • Ma T; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China.
  • Zhang W; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China.
  • Zhao Z; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China.
  • Yan Y; Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China.
  • Yang Y; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China.
  • Fang Y; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China. Electronic address: fangyulin@nwsuaf.edu.cn.
  • Sun X; College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling 712100, China. Electronic address: sunxiangyu@nwafu.edu.cn.
J Hazard Mater ; 475: 134903, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-38878441
ABSTRACT
Copper is one of the unavoidable heavy metals in wine production. In this study, the effects on fermentation performance and physiological metabolism of Saccharomyces cerevisiae under copper stress were investigated. EC1118 was the most copper-resistant among the six strains. The ethanol accumulation of EC1118 was 26.16-20 mg/L Cu2+, which was 1.90-3.15 times higher than that of other strains. The fermentation rate was significantly reduced by copper, and the inhibition was relieved after 4-10 days of adjustment. Metabolomic-transcriptomic analysis revealed that amino acid and nucleotide had the highest number of downregulated and upregulated differentially expressed metabolites, respectively. The metabolism of fructose and mannose was quickly affected, which then triggered the metabolism of galactose in copper stress. Pathways such as oxidative and organic acid metabolic processes were significantly affected in the early time, resulting in a significant decrease in the amount of carboxylic acids. The pathways related to protein synthesis and metabolism under copper stress, such as translation and peptide biosynthetic process, was also significantly affected. In conclusion, this study analyzed the metabolite-gene interaction network and molecular response during the alcohol fermentation of S. cerevisiae under copper stress, providing theoretical basis for addressing the influence of copper stress in wine production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Cobre / Etanol / Fermentação / Transcriptoma Idioma: En Revista: J Hazard Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Cobre / Etanol / Fermentação / Transcriptoma Idioma: En Revista: J Hazard Mater Ano de publicação: 2024 Tipo de documento: Article