Your browser doesn't support javascript.
loading
Efficient Initialization of Fluxonium Qubits based on Auxiliary Energy Levels.
Wang, Tenghui; Wu, Feng; Wang, Fei; Ma, Xizheng; Zhang, Gengyan; Chen, Jianjun; Deng, Hao; Gao, Ran; Hu, Ruizi; Ma, Lu; Song, Zhijun; Xia, Tian; Ying, Make; Zhan, Huijuan; Zhao, Hui-Hai; Deng, Chunqing.
Afiliação
  • Wang T; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Wu F; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Wang F; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Ma X; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Zhang G; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Chen J; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Deng H; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Gao R; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Hu R; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Ma L; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Song Z; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Xia T; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Ying M; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Zhan H; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
  • Zhao HH; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Beijing 100102, China.
  • Deng C; DAMO Quantum Laboratory, <a href="https://ror.org/00k642b80">Alibaba Group</a>, Hangzhou, Zhejiang 311121, China.
Phys Rev Lett ; 132(23): 230601, 2024 Jun 07.
Article em En | MEDLINE | ID: mdl-38905646
ABSTRACT
Fast and high-fidelity qubit initialization is crucial for low-frequency qubits such as fluxonium, and in applications of many quantum algorithms and quantum error correction codes. In a circuit quantum electrodynamics system, the initialization is typically achieved by transferring the state between the qubit and a short-lived cavity through microwave driving, also known as the sideband cooling process in atomic system. Constrained by the selection rules from the parity symmetry of the wave functions, the sideband transitions are only enabled by multiphoton processes which require multitone or strong driving. Leveraging the flux tunability of fluxonium, we circumvent this limitation by breaking flux symmetry to enable an interaction between a noncomputational qubit transition and the cavity excitation. With single-tone sideband driving, we realize qubit initialization with a fidelity exceeding 99% within a duration of 300 ns, robust against the variation of control parameters. Furthermore, we show that our initialization scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2024 Tipo de documento: Article