Your browser doesn't support javascript.
loading
Simultaneous inactivation of Microcystis aeruginosa and degradation of microcystin-LR in water by activation of periodate with sunlight.
Zhang, Xiangwei; Zhang, Baoyu; Shen, Yutao; Li, Zhengmao; Hou, Yanghui; Liu, Fuyang; Tong, Meiping.
Afiliação
  • Zhang X; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
  • Zhang B; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
  • Shen Y; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
  • Li Z; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
  • Hou Y; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China.
  • Liu F; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China. Electronic address: liufuyang@pku.edu.c
  • Tong M; The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P R China. Electronic address: tongmeiping@pku.edu
Water Res ; 260: 121948, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-38906082
ABSTRACT
Harmful algal blooms pose tremendous threats to ecological safety and human health. In this study, simulated solar light (SSL) irradiation was used to activate periodate (PI) for the inactivation of Microcystis aeruginosa and degradation of microcystin-LR (MC-LR). We found that PI-SSL system could effectively inactivate 5 × 106 cells·mL-1 algal cells below the limit of detection within 180 min. ·OH and iodine (IO3· and IO4·) radicals generated in PI-SSL system could rupture cell membranes, releasing intracellular substances including MC-LR into the reaction system. However, the released MC-LR could be degraded into non-toxic small molecules via hydroxylation and ring cleavage processes in PI-SSL system, reducing their environmental risks. High algae inactivation performance of PI-SSL system in solution with a wide pH range (3-9), with the coexisting anions (Cl-, NO3- and SO42-) and the copresence of natural organic matters (humic acid and fulvic acid), real water (lake water and river water), as well as in continuous-flow reactor (14 h) were also achieved. In addition, under natural sunlight irradiation, effective algae inactivation could also be achieved in an enlarged reactor (1 L). Overall, our study showed that PI-SSL system could avoid the inference by the background substances and could be employed as a feasible technique to treat algal bloom water.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Luz Solar / Microcystis / Microcistinas Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Luz Solar / Microcystis / Microcistinas Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article