Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment.
Sci Rep
; 14(1): 14315, 2024 06 21.
Article
em En
| MEDLINE
| ID: mdl-38906952
ABSTRACT
Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Aprendizagem em Labirinto
/
Navegação Espacial
/
Hipocampo
Limite:
Animals
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2024
Tipo de documento:
Article